Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 32(1): 355-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170330

RESUMO

BACKGROUND: Although a large number of trials have observed an anti-inflammatory property of acarbose, the currently available research remains controversial regarding its beneficial health effects. Hence, the purpose of this study was to examine the effect of acarbose on inflammatory cytokines and adipokines in adults. METHODS: PubMed, Web of Science, and Scopus were systematically searched until April 2023 using relevant keywords. The mean difference (MD) of any effect was calculated using a random-effects model. Weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated via the random-effects model. RESULTS: The current meta-analysis of data comprised a total of 19 RCTs. Meta-analysis showed that acarbose significantly decreased tumor necrosis factor-alpha (TNF-α) (weighted mean difference [WMD]) = - 4.16 pg/ml, 95% confidence interval (CI) - 6.58, - 1.74; P = 0.001) while increasing adiponectin (WMD = 0.79 ng/ml, 95% CI 0.02, 1.55; P = 0.044). However, the effects of acarbose on TNF-α concentrations were observed in studies with intervention doses ≥ 300 mg/d (WMD = - 4.09; 95% CI - 7.00, - 1.18; P = 0.006), and the adiponectin concentrations were significantly higher (WMD = 1.03 ng/ml, 95%CI 0.19, 1.87; P = 0.016) in studies in which the duration of intervention was less than 24 weeks. No significant effect was seen for C-reactive protein (CRP; P = 0.134), interleukin-6 (IL-6; P = 0.204), and leptin (P = 0.576). CONCLUSION: Acarbose had beneficial effects on reducing inflammation and increasing adiponectin. In this way, it may prevent the development of chronic diseases related to inflammation. However, more studies are needed.


Assuntos
Adipocinas , Citocinas , Adulto , Humanos , Acarbose/farmacologia , Acarbose/uso terapêutico , Adiponectina , Fator de Necrose Tumoral alfa , Ensaios Clínicos Controlados Aleatórios como Assunto , Interleucina-6 , Inflamação/tratamento farmacológico
2.
Clin Ther ; 46(2): e73-e86, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101999

RESUMO

PURPOSE: Hypertension stands as a prominent risk factor for cardiovascular disease, making it of utmost importance to address. Studies have shown that L-carnitine supplementation may lower blood pressure (BP) parameters in different populations. Therefore, we have conducted a systematic review and dose-response meta-analysis of published Randomized Controlled Trials (RCTs), including the most recent articles on the effect of L-carnitine supplementation on BP. METHODS: PubMed, ISI Web of Science, Cochrane databases, and Scopus were used to collect RCT studies published up to October 2022 without limitations in language. Inclusion criteria were adult participants and recipients of L-carnitine in oral supplemental forms. The funnel plot test, Begg's test, and Egger's test were used to examine publication bias. FINDINGS: After the search strategy, 22 RCTs (n = 1412) with 24 effect sizes fulfilled the criteria. It was found L-Carnitine supplementation did not have a significant effect on systolic blood pressure (SBP) (mm Hg) (weighted mean difference [WMD] = -1.22 mm Hg, 95% CI: -3.79, 1.35; P = 0.352; I2 = 85.0%, P < 0.001), and diastolic blood pressure (mm Hg) (WMD = -0.50 mm Hg, 95% CI: -1.49, 0.48; P = 0.318; I2 = 43.4%, P = 0.021) in the pooled analysis. Subgroup analyses have shown that L-carnitine supplementation had no lowering effect on SBP in any subgroup. However, there was a significant reduction in diastolic blood pressure in participants with a baseline body mass index >30 kg/m2 (WMD = -1.59 mm Hg; 95% CI: -3.11, -0.06; P = 0.041; I2 = 41.3%, P = 0.164). There was a significant nonlinear relationship between the duration of L-carnitine intervention and changes in SBP (coefficients = -6.83, P = 0.045). IMPLICATIONS: L-carnitine supplementation in adults did not significantly affect BP. But anyway, more studies should be done in this field on different individuals.


Assuntos
Carnitina , Hipertensão , Adulto , Humanos , Carnitina/farmacologia , Pressão Sanguínea , Suplementos Nutricionais , Hipertensão/tratamento farmacológico , Índice de Massa Corporal
3.
BMC Pharmacol Toxicol ; 24(1): 65, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990256

RESUMO

PURPOSE: Dyslipidemia, characterized by elevated levels of triglycerides (TG), low-density lipoprotein (LDL), total cholesterol (TC), and reduced levels of high-density lipoprotein (HDL), is a major risk factor for cardiovascular diseases (CVD). Several studies have shown the potential of acarbose in improving serum lipid markers. However, there have been conflicting results on the topic in adults. Therefore, a comprehensive systematic review and meta-analysis was conducted to assess the impact of acarbose on lipid profiles. METHODS: The random-effects approach was used to combine the data, and the results were provided as weighted mean difference (WMD) with 95% confidence intervals (CI). RESULTS: Our meta-analysis included a total of 74 studies with a combined sample size of 7046 participants. The results of the analysis showed that acarbose resulted in a reduction in levels of TG (WMD = - 13.43 mg/dl, 95% CI: - 19.20, - 7.67; P < 0.001) and TC (WMD = - 1.93 mg/dl, 95% CI: - 3.71, - 0.15; P = 0.033), but did not affect other lipid markers. When conducting a nonlinear dose-response analysis, we found that acarbose was associated with an increase in levels of HDL (coefficients = 0.50, P = 0.012), with the highest increase observed at a dosage of 400 mg/d. Furthermore, our findings suggested a non-linear relationship between the duration of the intervention and TC (coefficients = - 18.00, P = 0.032), with a decline observed after 50 weeks of treatment. CONCLUSION: The findings of this study suggest that acarbose can reduce serum levels of TG and TC. However, no significant effects were observed on LDL or HDL levels.


Assuntos
Dislipidemias , Lipídeos , Adulto , Humanos , Acarbose/farmacologia , Acarbose/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos , Biomarcadores , Lipoproteínas HDL
4.
Biol Trace Elem Res ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870684

RESUMO

Zinc supplementation has therapeutic effects on cardiovascular disease (CVD) risk factors, including dyslipidemia, hyperglycemia, and inflammation as the main contributors to CVD pathogenesis. Since CVD is a major cause of mortality among people with type 2 diabetes mellitus (T2DM), this study aimed to overview the potential effects of zinc supplementation on CVD risk factors in T2DM patients. To determine appropriate randomized clinical trials (RCTs) investigating the effects of zinc supplementation on CVD risk factors, electronic sources including PubMed, Web of Science, and Scopus were systematically searched until January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random-effects models were estimated, and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). Of the 4004 initial records, 23 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), hemoglobin A1C (HbA1C), and C-reactive protein (CRP), while high-density cholesterol (HDL) concentrations showed an elevation after zinc supplementation. In addition to statistical significance, the effect of zinc supplementation on most of the variables was clinically significant; however, the quality of evidence in the included studies is regarded as low or very low for most variables. Our study demonstrated that zinc supplementation has beneficial effects on glycemic control markers, lipid profile, and CRP levels as a classic marker of inflammation in T2DM. Due to the high degree of heterogeneity between studies and the low rate of quality in them, further well-designed studies are necessitated to strengthen our findings.

5.
Inflammopharmacology ; 31(5): 2173-2199, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656233

RESUMO

L-carnitine supplementation may be beneficial in improving inflammatory conditions and reducing the level of inflammatory cytokines. Therefore, according to the finding of randomized controlled trials (RCTs), the systematic review and meta-analysis aimed to investigate the effect of L-carnitine supplementation on inflammation in adults. To obtain acceptable articles up to October 2022, a thorough search was conducted in databases including PubMed, ISI Web of Science, the Cochrane Library, and Scopus. A random-effects model was used to estimate the weighted mean difference (WMD). We included the 48 RCTs (n = 3255) with 51 effect sizes in this study. L-carnitine supplementation had a significant effect on C-reactive protein (CRP) (p < 0.001), interleukin-6 (IL-6) (p = 0.001), tumor necrosis factor-α (TNF-α) (p = 0.002), malondialdehyde (MDA) (p = 0.001), total antioxidant capacity (TAC) (p = 0.029), alanine transaminase (ALT) (p < 0.001), and aspartate transaminase (AST) (p < 0.001) in intervention, compared to the placebo group. Subgroup analyses showed that L-carnitine supplementation had a lowering effect on CRP and TNF-α in trial duration ≥ 12 weeks in type 2 diabetes and BMI ≥ 25 kg/m2. L-carnitine supplementation reduced ALT levels in overweight and normal BMI subjects at any trial dose and trial duration ≥ 12 weeks and reduced AST levels in overweight subjects and trial dose ≥ 2 g/day. This meta-analysis revealed that L-carnitine supplementation effectively reduces the inflammatory state by increasing the level of TAC and decreasing the levels of CRP, IL-6, TNF-α and MDA in the serum.


Assuntos
Carnitina , Suplementos Nutricionais , Adulto , Humanos , Carnitina/farmacologia , Carnitina/uso terapêutico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa , Sobrepeso/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteína C-Reativa/análise , Antioxidantes , Biomarcadores
6.
Front Nutr ; 10: 1084084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599681

RESUMO

Acarbose (ACB) seems to be an effective drug in the management of cardiovascular risk factors. However, no previous meta-analysis of randomized controlled trials (RCTs) has been done to evaluate the effects of ACB on cardiovascular risk factors on impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D), and type 1 diabetes mellitus (T1D). We comprehensively searched electronic databases including Scopus, Web of Science, and PubMed for RCTs for related keywords up to September 2022. A random-effects model was used to estimate the weighted mean difference (WMD) and 95% confidence interval (CI). The pooled analysis demonstrated that ACB treatment had a significant effect on fasting blood glucose (FBG) (WMD = -3.55 mg/dL; 95%CI: -6.29, -0.81; p = 0.011), fasting insulin (WMD = -6.73 pmoL/L; 95%CI: -10.37, -3.10; p < 0.001), HbA1c [WMD = -0.32%; 95%CI: -0.45, -0.20; p < 0.001], body weight (WMD = -1.25 kg; 95%CI: -1.79, -0.75; p < 0.001), body mass index (BMI) (WMD = -0.64 kg/m2; 95%CI: -0.92, -0.37; p < 0.001), tumor necrosis factor-alpha (TNF-α) (WMD = -2.70 pg/mL, 95%CI: -5.25, -0.16; p = 0.037), leptin (WMD = -1.58 ng/mL; 95%CI: -2.82, -0.35; p = 0.012), alanine transaminase (ALT) (WMD = 0.71 U/L; 95%CI: -0.31, 1.85; p = 0.164), triglyceride (TG) (WMD = -13.89 mg/dL; 95%CI: -20.69, -7.09; p < 0.001), total cholesterol (TC) (WMD = -2.26 mg/dL; 95%CI: -4.18, -0.34; p = 0.021), systolic blood pressure (SBP) (WMD = -1.29 mmHg; 95%CI: -2.44, -0.15; p = 0.027), and diastolic blood pressure (DBP) (WMD = 0.02 mmHg; 95%CI: -0.41, 0.45; p = 0.925) in an intervention group, compared with a placebo group. The non-linear dose-response analysis showed that ACB reduces the TC in trial duration by >50 weeks, and 180 mg/day is more effective for the decrement of CRP. ACB can improve lipid profiles, glycemic indices, anthropometric indices, and inflammatory markers in T2D, T1D, and IGT patients.

7.
J Trace Elem Med Biol ; 79: 127244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37399684

RESUMO

BACKGROUND AND OBJECTIVE: A deficit in zinc has been related to a higher probability of developing cardiovascular diseases (CVDs). The anti-inflammatory and anti-oxidative capabilities of zinc may have a wide range of therapeutic impacts on CVDs. We conducted a comprehensive systematic review and meta-analysis of the possible impacts that zinc supplementation may have on the risk factors associated with CVDs. METHODS: To identify eligible randomized clinical trials (RCTs) evaluating the effects of zinc supplementation on CVDs risk factors, electronic databases including PubMed, Web of Science, and Scopus were systematically searched up to January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random effects models were estimated and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS: Of 23165 initial records, 75 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), Hemoglobin A1C (HbA1C), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH), with no noticeable effects on low-density lipoprotein (LDL), high-density lipoprotein (HDL), insulin, systolic blood pressure (SBP), diastolic blood pressure (DBP), aspartate transaminase (AST), and Alanine aminotransferase (ALT). CONCLUSION: Overall, zinc supplementation may boost recognized coronary risk factors that contribute to the development of CVDs. Future research should be conducted to bolster our results.


Assuntos
Doenças Cardiovasculares , Suplementos Nutricionais , Humanos , Zinco , Glicemia/metabolismo , Triglicerídeos
8.
Front Pharmacol ; 14: 1144550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089938

RESUMO

Background: Oxidative stress is considered a major factor in the pathophysiology of non-alcoholic liver disease (NAFLD). A growing body of evidence indicates that oleoylethanolamide (OEA), a bioactive lipid mediator, has anti-inflammatory and antioxidant properties. This trial investigated the effects of OEA administration on inflammatory markers, oxidative stress and antioxidant parameters of patients with NAFLD. Methods: The present randomized controlled trial was conducted on 60 obese patients with NAFLD. The patients were treated with OEA (250 mg/day) or placebo along with a low-calorie diet for 12 weeks. Inflammatory markers and oxidative stress and antioxidant parameters were evaluated pre-and post-intervention. Results: At the end of the study, neither the between-group changes, nor the within-group differences were significant for serum levels of high-sensitivity C-reactive protein (hs-CRP), interleukin-1 beta (IL-1ß), IL-6, IL-10, and tumor necrosis-factor α (TNF-α). Serum levels of total antioxidant capacity (TAC) and superoxide dismutase (SOD) significantly increased and serum concentrations of malondialdehyde (MDA) and oxidized-low density lipoprotein (ox-LDL) significantly decreased in the OEA group compared to placebo at study endpoint (p = 0.039, 0.018, 0.003 and 0.001, respectively). Although, no significant between-group alterations were found in glutathione peroxidase and catalase. There were significant correlations between percent of changes in serum oxidative stress and antioxidant parameters with percent of changes in some anthropometric indices in the intervention group. Conclusion: OEA supplementation could improve some oxidative stress/antioxidant biomarkers without any significant effect on inflammation in NAFLD patients. Further clinical trials with longer follow-up periods are demanded to verify profitable effects of OEA in these patients. Clinical Trial Registration: www.irct.ir, Iranian Registry of Clinical Trials IRCT20090609002017N32.

9.
Front Nutr ; 9: 1055517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570145

RESUMO

Introduction: Cardiovascular disease (CVD) is one of the leading causes of death and disability in the world and is estimated to involve more people in the next years. It is said that alternative remedies such as herbs can be used to manage the complications of this disease. For this reason, we aimed to conduct this meta-analysis to systematically assess and summarize the effects of saffron supplementation as an important herb on cardiovascular risk factors in adults. Methods: A systematic search was done in PubMed, Scopus, and Web of Science to find eligible articles up to September 2022. Randomized controlled trials (RCTs) that evaluated the effects of saffron on lipid profiles, glycemic control, blood pressure, anthropometric measures, and inflammatory markers were included. In the meta-analysis, 32 studies were taken into account (n = 1674). Results: Consumption of saffron significantly decreased triglyceride (TG) (WMD = -8.81 mg/dl, 95%CI: -14.33, -3.28; P = 0.002), total cholesterol (TC) (WMD = -6.87 mg/dl, 95%CI: -11.19, -2.56; P = 0.002), low density lipoprotein (LDL) (WMD = -6.71 mg/dl, 95%CI: -10.51, -2.91; P = 0.001), (P = 0.660), fasting blood glucose (FBG) level (WMD = -7.59 mg/dl, 95%CI: -11.88, -3.30; P = 0.001), HbA1c (WMD = -0.18%, 95%CI: -0.21, -0.07; P < 0.001), homeostasis model assessment-insulin resistance (HOMA-IR) (WMD = -0.49, 95%CI: -0.89, -0.09; P = 0.016), systolic blood pressure (SBP) (WMD = -3.42 mmHg, 95%CI: -5.80, -1.04; P = 0.005), tumor necrosis factor α (TNF-α) (WMD = -2.54 pg/ml, 95%CI: -4.43, -0.65; P = 0.008), waist circumference (WC) (WMD = -1.50 cm; 95%CI: -2.83, -0.18; P = 0.026), malondialdehyde (MDA) (WMD = -1.50 uM/L, 95%CI: -2.42, -0.57; P = 0.001), and alanine transferase (ALT) (WMD = -2.16 U/L, 95%CI: -4.10, -0.23; P = 0.028). Also, we observed that saffron had an increasing effect on total antioxidant capacity (TAC) (WMD = 0.07 mM/L, 95%CI: 0.01, 0.13; P = 0.032). There was linear regression between FBG and the duration of saffron intake. Additionally, the non-linear dose-response analysis has shown a significant association of saffron intervention with HDL (P = 0.049), HOMA-IR (P = 0.002), weight (P = 0.036), ALP (P = 0.016), FBG (P = 0.011), HbA1c (P = 0.002), and TNF-α (P = 0.042). A non-linear association between the length of the intervention and the level of HDL and DBP was also found. Discussion: That seems saffron could effectively improve TG, TC, LDL, FBG, HbA1c, HOMA-IR, SBP, CRP, TNF-α, WC, MDA, TAC, and ALT.

10.
Front Nutr ; 9: 1006543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458165

RESUMO

Background: Food security is a fundamental human right that must be upheld to preserve excellent general welfare, and mental, physical, and social health. However, according to the United Nations Food and Agriculture Organization (FAO) report in 2020, the level of food insecurity in the world is increasing. Objective: Determining the prevalence of food insecurity in Iran will be beneficial for Iran and other low-middle-income countries. Methods: We searched both English and Persian (Iranian) databases including PubMed, Scopus, Web of Science, Google Scholar, SID, Irandoc, Magiran, Civilica, and Iranian Medical Sciences Theses System from 01 January 1990 to 01 February 2022. Observational studies that reported the prevalence of household food insecurity among a healthy Iranian population and assessed food insecurity at the individual or household level using validated questionnaires were included. Results: One hundred six studies and/or theses with a total of 152, 300 participants met the review criteria. Our analyses demonstrated that the prevalence of food insecurity among the healthy Iranian population was 55.9% (95% CI: 52.6-59.2%) and the highest prevalence of food insecurity was in the western regions with 64.8% (95% CI: 57.7-72.0%). Subgroup analyses showed that food insecurity among women at 51.3% (95% CI: 45.1-57.6%) and rural inhabitants at 66.1% (95% CI: 58.8-73.4%) was significantly higher than men at 47.8% (95% CI: 41.8-53.8%) and urban residents at 47.1% (95% CI: 44.1-50.0%), respectively. Among the age groups, the highest prevalence of food insecurity was in adults at 56.5% (95% CI: 51.7-61.2%). Conclusion: The prevalence of food insecurity in a healthy Iranian population was higher than the global average. Women, rural residents, and residents of the western regions of Iran had a higher prevalence of food insecurity. These groups should be prioritized in programs to reduce the prevalence of food insecurity in Iran. Systematic review registration: www.crd.york.ac.uk/PROSPERO, identifier: CRD42022328473.

11.
Food Funct ; 13(22): 11568-11578, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36263703

RESUMO

This study assessed the effects of propolis supplementation on glucose homeostasis, lipid profile, liver function, anthropometric indices and meta-inflammation in patients with non-alcoholic fatty liver disease (NAFLD). In this double-blind placebo-controlled randomized clinical trial, 44 patients with NAFLD confirmed by ultrasonography findings were randomly allocated into either the "propolis" (n = 23) or "placebo" (n = 21) group along with a calorie-restricted diet (-500 kcal d-1) for 8 weeks. Fasting serum levels of metabolic factors, liver enzymes, and inflammatory factors, as well as anthropometric indices, dietary intake and appetite status were assessed pre-and post-intervention. The liver fibrosis score, homeostasis model assessment of insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) were also calculated. The weight, body mass index (BMI), waist and hip circumferences, and waist to height ratio significantly decreased in both groups (p < 0.001), while the waist to hip ratio (p = 0.006) and serum level of total cholesterol (p = 0.038) decreased only in the propolis arm. However, no significant changes in anthropometric measurements and lipid profile were found between the groups at the end of the intervention. Fasting blood sugar (p = 0.037), the serum insulin level (p = 0.040), HOMA-IR (p = 007), desire to eat sweet foods (p = 0.005) and the NAFLD fibrosis score (p = 0.013) decreased significantly in the propolis group compared to the placebo group, post-intervention after adjusting for baseline values and potential confounders. However, QUICKI showed a significant increase (p = 0.015) in the propolis arm compared to the placebo at the study endpoint. Although there were significant reductions in the serum levels of inflammatory factors including tumor necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4) and monocyte chemoattractant protein-1 (MCP-1), as well as liver enzymes and severity of fatty liver, between-group differences were not statistically significant after adjusting for the potential confounding factors. The estimated number needed to treat (NNT) due to 8-week propolis supplementation (510 mg per day) for at least 1-point improvement in NAFLD severity was found to be approximately 3. In conclusion, propolis supplementation along with a calorie-restricted diet for 8 weeks could significantly improve the glucose homeostasis, hepatic fibrosis score and liver function in patients with NAFLD. Further clinical trials are encouraged to study the effects of propolis supplementation in patients with long-term NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Própole , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Homeostase , Suplementos Nutricionais/efeitos adversos , Lipídeos , Glucose , Método Duplo-Cego , Glicemia/metabolismo
12.
Front Nutr ; 9: 1013055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313096

RESUMO

Cardiovascular disease (CVD) is a major concern today. Herbal medicine is one helping way to control CVD risks. One conclusive of herbal medicine is Berberine (BBR) and converse about it still exists, to clarify this issue, this meta-analysis was performed. PubMed/Medline, Scopus, and Web of Science were searched for RCTs in adults on the effect of BBR supplementation on CVD risk factors up to July 2022. The pooled results showed BBR significantly reduced triglyceride (WMD = -23.70 mg/dl; 95%CI -30.16, -17.25; P < 0.001), total cholesterol (WMD = -20.64 mg/dl; 95%CI -23.65, -17.63; P < 0.001), low-density lipoprotein WMD = -9.63 mg/dl; 95%CI, -13.87, -5.39; P < 0.001), fasting blood glucose (FBG) (WMD = -7.74 mg/dl; 95%CI -10.79, -4.70; P < 0.001), insulin (WMD = -3.27 mg/dl; 95%CI -4.46,-2.07; P < 0.001), HbA1c (WMD = -0.45%; 95%CI -0.68, -0.23; P < 0.001), HOMA-IR (WMD = -1.04; 95%CI -1.55, -0.52; P < 0.001), systolic blood pressure (WMD = -5.46 mmHg; 95%CI -8.17, -2.76; P < 0.001), weight (WMD = -0.84; 95%CI -1.34,-0.34; P < 0.001), body mass index (WMD = -0.25 kg/m2; 95%CI -0.46, -0.04; P = 0.020), while increased high-density lipoprotein (HDL) (WMD = 1.37 mg/dl; 95%CI 0.41,2.23; P = 0.005). The optimal dose of BBR was 1 g/day for TG, TC, and weight, 1.8 g/day for insulin and HOMA-IR, and 5 g/day for HDL. FBG's most efficient time frame was 40 weeks from the beginning of supplementation, whereas DBP and waist circumference was 50 weeks. In conclusion, the lipid profile, FBG balance, obesity parameters, and SBP were improved with BBR supplementation. Systematic review registration: CRD42022347004.

13.
Front Nutr ; 9: 1082097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704801

RESUMO

Background and aims: Hyperglycemia and insulin resistance are concerns today worldwide. Recently, L-carnitine supplementation has been suggested as an effective adjunctive therapy in glycemic control. Therefore, it seems important to investigate its effect on glycemic markers. Methods: PubMed, Scopus, Web of Science, and the Cochrane databases were searched in October 2022 for prospective studies on the effects of L-carnitine supplementation on glycemic markers. Inclusion criteria included adult participants and taking oral L-carnitine supplements for at least seven days. The pooled weighted mean difference (WMD) was calculated using a random-effects model. Results: We included the 41 randomized controlled trials (RCTs) (n = 2900) with 44 effect sizes in this study. In the pooled analysis; L-carnitine supplementation had a significant effect on fasting blood glucose (FBG) (mg/dl) [WMD = -3.22 mg/dl; 95% CI, -5.21 to -1.23; p = 0.002; I 2 = 88.6%, p < 0.001], hemoglobin A1c (HbA1c) (%) [WMD = -0.27%; 95% CI, -0.47 to -0.07; p = 0.007; I 2 = 90.1%, p < 0.001] and homeostasis model assessment-estimate insulin resistance (HOMA-IR) [WMD = -0.73; 95% CI, -1.21 to -0.25; p = 0.003; I 2 = 98.2%, p < 0.001] in the intervention compared to the control group. L-carnitine supplementation had a reducing effect on baseline FBG ≥100 mg/dl, trial duration ≥12 weeks, intervention dose ≥2 g/day, participants with overweight and obesity (baseline BMI 25-29.9 and >30 kg/m2), and diabetic patients. Also, L-carnitine significantly affected insulin (pmol/l), HOMA-IR (%), and HbA1c (%) in trial duration ≥12 weeks, intervention dose ≥2 g/day, and participants with obesity (baseline BMI >30 kg/m2). It also had a reducing effect on HOMA-IR in diabetic patients, non-diabetic patients, and just diabetic patients for insulin, and HbA1c. There was a significant nonlinear relationship between the duration of intervention and changes in FBG, HbA1c, and HOMA-IR. In addition, there was a significant nonlinear relationship between dose (≥2 g/day) and changes in insulin, as well as a significant linear relationship between the duration (weeks) (coefficients = -16.45, p = 0.004) of intervention and changes in HbA1C. Conclusions: L-carnitine could reduce the levels of FBG, HbA1c, and HOMA-IR. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42022358692.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...